Knowing when to draw the line: Designing more informative ecological experiments

ARTICLE in FRONTIERS IN ECOLOGY AND THE ENVIRONMENT · MAY 2005

CITATIONS 107
READS 83

3 AUTHORS, INCLUDING:

Jay T Lennon
Indiana University Bloomington
73 PUBLICATIONS 1,644 CITATIONS

SEE PROFILE
Knowing when to draw the line: designing more informative ecological experiments

Kathryn L Cottingham¹, Jay T Lennon¹,², and Bryan L Brown¹,³

Linear regression and analysis of variance (ANOVA) are two of the most widely used statistical techniques in ecology. Regression quantitatively describes the relationship between a response variable and one or more continuous independent variables, while ANOVA determines whether a response variable differs among discrete values of the independent variable(s). Designing experiments with discrete factors is straightforward because ANOVA is the only option, but what is the best way to design experiments involving continuous factors? Should ecologists prefer experiments with few treatments and many replicates analyzed with ANOVA, or experiments with many treatments and few replicates per treatment analyzed with regression? We recommend that ecologists choose regression, especially replicated regression, over ANOVA when dealing with continuous factors for two reasons: (1) regression is generally a more powerful approach than ANOVA and (2) regression provides quantitative output that can be incorporated into ecological models more effectively than ANOVA output.

In a nutshell:
- Analysis of variance (ANOVA) and linear regression are widely used by ecologists, but surprisingly little information is available regarding their relative merits
- As linear regression is more powerful than ANOVA and provides quantitative information that can be used to build ecological models, we suggest that ecologists use regression whenever possible
- In particular, replicated regression designs provide the flexibility to analyze data with regression when appropriate and with ANOVA otherwise

¹Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 (cottingham@dartmouth.edu); ²Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; ³Integrative Biology, University of Texas at Austin, Austin, TX 78712

© The Ecological Society of America

www.frontiersinecology.org
Case Study Panel 1. Julie’s dilemma

Julie is a second-year graduate student trying to decide how to set up her next field experiment. Last summer, she conducted a number of preliminary studies; the most promising evaluated the effects of plant community diversity and light on ecosystem processes using a 2 x 2 factorial experiment in aquatic mesocosms. Although no effect of diversity was detected, the light treatment — shaded versus unshaded — had modest but interesting effects on several key response variables, including ecosystem respiration. Julie has therefore decided to evaluate the effect of light more thoroughly this year, but she is not sure how to design the experiment. Because she has a fixed number of mesocosms (24) available for her study, she faces an important decision about allocating experimental units to treatments (light levels) versus replicates. Should she repeat the design from last year, with just two levels of light, to maximize her power to detect an effect of light? Or should she create a gradient of light levels in order to map how her response variables vary with light? If she has more than two light levels, how many should she have, and how should they be selected? Moreover, because light is a continuous variable, should she plan to analyze her results with ANOVA, linear regression, or some combination of these approaches? This paper attempts to provide guidance to Julie and others who are faced with tough decisions about designing ecological experiments.

Reasons that could be considered as either a continuous or discrete variable, depending on context, and the research question is flexible enough to be explored as either a regression or an ANOVA problem. For example, in Case Study Panel 1, Julie plans to evaluate the effect of light on ecosystem respiration, but she has not yet refined her research question to the point where the choice between regression and ANOVA is obvious. Julie can therefore define light as a discrete variable (by having shaded versus unshaded treatments) or a continuous variable (by using shade cloths that pass different percentages of the incident light). In a situation like this, what are the advantages and disadvantages of choosing a regression-based design versus an ANOVA-based design?

This review provides concrete suggestions for choosing between regression- and ANOVA-based experiments for research questions involving at least one continuous independent variable and for which the choice of approach is not dictated by the research question. We begin with an overview of the general linear model that underlies both techniques. We then make a head-to-head comparison between the power of regression and ANOVA models before introducing replicated regression, an approach that maximizes both power and flexibility. Throughout, we use the main text to make our major messages accessible to all readers, Case Study Panels to apply our findings (eg Case Study Panel 1), and Statistical Panels to provide details for interested readers (eg Statistical Panel 1).

Some key information about regression and ANOVA

Although most introductory statistics courses make a clear distinction between fitting a curve to data (regression) versus testing for differences between treatment means (ANOVA), few point out the underlying similarity between these techniques. ANOVA and linear regression share the same underlying mathematical model, the general linear model, which is expressed in matrix form as

$$Y = X \beta + \epsilon$$

(Web-only Appendix 1; Neter et al. 1996). In this model, Y represents the response variable, X a matrix of the independent variable(s), β the parameters associated with each independent variable, and ϵ the errors. The matrix of independent variables X determines whether we are performing a regression or an ANOVA. In regression, the X matrix contains only continuous variables, while ANOVA uses only discrete variables (sometimes called “indicator” or “dummy” variables). The elements of the β matrix of a regression quantify the shape of the relationship between Y and X, while the elements of the β matrix of an ANOVA provide information about treatment means. Alternatively, the X matrix can contain a mix of discrete and continuous variables, allowing researchers to compare the shapes of relationships across different treatment groups (eg ANCOVA and indicator variables regression; Neter et al. 1996); we do not address these intermediate cases here.

Although they have the same underlying mathematical framework, regression and ANOVA are different in several fundamental ways. For example, because these techniques address different questions (or, alternatively, test different hypotheses), their underlying assumptions are subtly different (Statistical Panel 1). Most importantly, the general linear model assumes that the relationship between Y and X can be described using a linear equation (Neter et al. 1996), so that regression is inappropriate when the relationship cannot be made linear in the parameters (eg through transformations or polynomial terms). In contrast, ANOVA does not assume any particular relationship between Y and X, and so is appropriate even when the response to the independent variable(s) is highly nonlinear.

Another key difference between regression and ANOVA lies in the number of columns used to define the X matrix, which determines the number of parameters in the general linear model. Given a particular experimental design, the X matrix for ANOVA generally has more columns than the X matrix for regression.
because ANOVA requires each treatment to be identified using a separate column of X (Web-only Appendix 1). To make this statement more concrete, consider our case study. Suppose that Julie set up her mesocosm experiment to quantify the effects of light on ecosystem respiration using five levels of light. A simple linear regression to account for light effects would have two columns in X, corresponding to the intercept and slope. On the other hand, a one-way ANOVA model for the same experiment would require five columns, each specifying the mean for a treatment. This difference in the number of parameters grows more extreme as the number of treatments increases. For example, suppose Julie added temperature as a second factor, such that she had two levels of temperature and five levels of light. A typical multiple regression model would have four parameters (intercept, main effects of light and temperature, and a light x temperature interaction), while the two-way ANOVA would require ten parameters (grand mean, four parameters for light effects, one parameter for temperature effects, and four light x temperature interactions).

■ The relative power of regression and ANOVA

This difference in the number of parameters leads us to one of the most important take-home messages from this review: because regression requires fewer parameters, it is generally a more powerful statistical approach than ANOVA. Statisticians define power as the probability of detecting an effect when that effect is present (ie the probability of rejecting the null hypothesis when the null hypothesis is false). In regression, the null hypothesis is that Y is not predicted by a specific linear function of X, while in ANOVA, the null hypothesis is that treatments do not differ. The power for the overall F-test is calculated in the same way for all general linear models (Statistical Panel 2); we used this procedure to generate power curves (graphs showing how the ability to detect an effect changes with effect size) for a variety of one- and two-way experimental designs (Figure 1). Several interesting features emerged from this analysis:

1. The power curve for ANOVA is determined by the number of replicates per treatment, as power increases with increased replication (Figure 1). This should come as no surprise to anyone who has taken a course in experimental design. If the number of experimental units is fixed by logistical constraints, power increases when these units are allocated to fewer treatments with more replicates per treatment. Moreover, the power for the overall F-test is determined by the total number of treatment combinations, not the number of factors (independent vari-
Figure 1. Power curves for all possible balanced one- and two-way regression and ANOVA models when there are (a) 24 and (b) 48 experimental units. Identifying information for each curve is provided below the figure; the number of replicates per treatment can be determined by dividing the number of experimental units by the number of treatments. Note that regression generally has greater power than ANOVA, except in the special case where the ANOVA only involves two levels per factor.

(2) The power curves for regression are determined by the number of factors and the number of experimental units, but not the number of treatments or replicates (Figure 1). Given a fixed number of experimental units, the regression power curve is determined by the number of factors (compare the red and yellow lines in Figure 1). Given a fixed number of factors, power increases with the number of experimental units (compare lines with the same colors in the top and bottom panels of Figure 1). It is only in ANOVA that the allocation of experimental units to treatments versus replicates determines power.

(3) When there are only two levels per factor, the power of ANOVA is always equivalent to the power of regression because both have the same number of parameters. Thus, a one-way ANOVA with two levels of the independent variable has the same power as a simple linear regression (red lines in Figure 1), while a two-way ANOVA with two levels per factor has the same power as a multiple regression model with main effects and an interaction (yellow lines in Figure 1).

(4) For all other designs, regression is more powerful than ANOVA. In designs with one factor, simple linear regression is more powerful than ANOVA, unless there are just two levels of the factor. Similarly, in designs

Statistical Panel 2. Details for power calculations

The power of the overall F-test for regression and ANOVA is calculated in the same way (Cohen 1988), as long as the ANOVA considers fixed effects and the regression is with little error in X. As with all power calculations, we begin by specifying the null (H0) and alternative (Ha) hypotheses of interest and the significance level of α for rejecting H0. The null hypothesis in either case is that the variability in Y is due to chance rather than biological differences – that is, H0: R2 Ha = 0, where R2 Ha indicates the fraction of variation in Y explained by the model with parameters β. We express H0 as a function of the minimum variability explained by the model (a minimum R2 Ha) thought to be of biological significance. We then translate the target R2 Ha into an effect size f2 using the ratio of explained to unexplained variance:

\[
f^2 = \frac{R^2_{Ha}}{1 - R^2_{Ha}}
\]

The critical value of the F-statistic (Fcrit) that will cause us to reject H0 is determined from α and the numerator (u) and denominator (v) degrees of freedom (df) for the particular experimental design used. Because the total number of treatments determines u and v in the overall F-test (see table at the end of Web-only Appendix I), there is no change in the power curves when there are multiple factors under investigation.

Given u, v, and a target f2 (Ha), we calculate the non-centrality parameter λ of the non-central F-distribution with u, v df as

\[
\lambda = f^2 (u + v + 1)
\]

Finally, we calculate the power of the overall F-statistic as one minus the probability associated with the non-central F-distribution at the value specified by Fcrit, u, v, and λ.

The power curves in Figure 1 were generated using this algorithm implemented in Matlab 6.5 (MathWorks, Natick, MA). For a particular experimental design, we calculated u, v, and Fcrit for both the regression and ANOVA models. We then determined λ and power given these values for all effect sizes corresponding to R2 Ha from 0 to 1 at steps of 0.05. Our programs and data files with the power curves are available online (Web-only Appendix 4).
Based on the above findings, we recommend that ecologists use regression-based experimental designs whenever possible. First, regression is generally more powerful than ANOVA for a given number of experimental units (Figure 1). Second, regression designs are more efficient than ANOVA designs, particularly for quantifying responses to multiple factors (Gotelli and Ellison 2004). Third, regression models have greater information content: regression results can be readily incorporated into theoretical ecological models (eg Aber et al. 1991) or used to make empirical predictions for new systems (eg Meeuwis and Peters 1996). Modelers frequently bemoan the lack of empirical data to develop equations and parameters for simulation studies (Canham et al. 2003), and a greater emphasis on regression-based designs may help to fill this gap (Gotelli and Ellison 2004).

It should be remembered, however, that regression is not appropriate in all situations. For example, standard linear regression is inappropriate when there are thresholds and non-linearities in the data that cannot be accommodated by a linear model or transformations (Figure 2; Web-only Appendix 2), or when there are measurement errors in one or more independent variables (“errors-in-variables”; Statistical Panel 1). Because these situations are not uncommon, a regression design that does not replicate treatments can be risky (Case Study Panel 2). This makes replicated regression experiments (Figures 2c and d), which provide the flexibility to analyze the resulting data with either regression or ANOVA, extremely attractive.

Replicated regression: a powerful hybrid

Replicated regression (RR) combines the pattern-distinguishing abilities and statistical power of regression with ANOVA-like replication of treatments (Figure 2). In RR designs, researchers make multiple independent observations of the response variable for at least some values of the independent variable(s). Here, we focus on the case where there are equal numbers of replicates for every treatment because balanced designs give unbiased results even with some heterogeneity in error variance (Statistical Panel 1). Because the regression power curve is determined by the

Case Study Panel 2. Choosing between regression and ANOVA

After seeing Figure 1, Julie becomes very enthusiastic about using a regression design for her field experiment. She decides that she should monitor changes in ecosystem respiration across 12 different levels of light (with two replicate mesocosms per level) and then analyze the results with linear regression. Pleased with herself, Julie goes to her advisor to explain her proposed design. A self-described “ANOVA-head”, the advisor asks Julie to briefly justify why she has chosen this particular design. Julie argues that:

- By using more levels of light, she’ll be able to better describe exactly how respiration changes with light.
- Her regression relating respiration and light could become part of a simulation model to evaluate how aquatic ecosystem respiration might respond to changes in cloud cover predicted by global warming.

Julie’s advisor concedes that these are both worthy points, but then asks a single, pointed question: “What will you do if the relationship between ecosystem respiration and light cannot be described using a linear model?” At this point, Julie realizes that a regression-based experiment might be more complicated than she realized.
number of experimental units, and not the number of replicates per treatment, allowing some experimental units to replicate increases analytical flexibility without decreasing power.

RR designs make it possible to use lack-of-fit tests to evaluate the appropriateness of a regression model (Web-only Appendix 2) and/or use ANOVA as a “fall back” analysis when data violate the assumptions of standard linear regression (Figure 2). When there are thresholds and non-linearities in the response variable, nonlinear regression (e.g. Draper and Smith 1998), piecewise regression (e.g. Toms and Lesperance 2003), and quantile regression (e.g. Cade and Noon 2003) are often valid alternatives. However, many ecologists are unfamiliar or uncomfortable with these approaches. For these researchers, ANOVA is also a valid alternative, but only if the experiment included replicates at some levels of X.

“Falling back” to ANOVA almost always entails a reduction in statistical power (Figure 1), but it is possible to design experiments such that regression can be used to analyze the results when the resulting data are appropriate and ANOVA when they are not, without sacrificing too much statistical power (Case Study Panel 3).

Designing such experiments requires balancing two competing needs: having enough levels of the independent variable(s) X to fit a meaningful quantitative model while at the same time protecting against the possibility of non-linearity or errors-in-variables by having more replicates at each level of X. Decisions about this trade-off should be based on the following criteria:

The importance of building a quantitative model for the relationship between X and Y

When the primary research objective is to develop a predictive model for Y, then sampling as many levels of the independent variables as possible should be given the highest priority. In this situation, we recommend “falling back” to alternative regression models (e.g. non-linear, piecewise, or quantile regression) instead of ANOVA, because ANOVA is unlikely to yield satisfactory conclusions.

The potential size of the experiment

The number of experimental units dictates the potential power of the regression analysis, as well as the list of potential RR designs. Generally speaking, the more experimental units there are, the more powerful the analysis will be, although logistical constraints usually provide an upper boundary on experiment size.

The probability of a regression model being inappropriate

If problems with regression are unlikely (see Statistical Panel 1), we suggest having more treatments and fewer replicates per treatment. However, when there may be problems with regression, we recommend adopting a design with fewer treatments and more replicates per treatment. The likelihood that regression will be inappropriate can be estimated by studying the literature, as well as by intuition and pilot experiments (see Case Study Panels 2 and 3 for an example).

The expected variability among replicates

As with all power analyses, an a priori estimate of variability within treatments is necessary (Quinn and Keough 2002). The greater the expected variability, the stronger the need for more replicates. In particular, a rough estimate of the expected ratio of the variability within treatments to the overall variability in the response variable can be used to choose between alternative RR designs (Case Study Panel 3; Web-only Appendices 2, 3).

The desired power of the “fall back” ANOVA

To ensure that a “fall-back” ANOVA has high power, a researcher should increase the number of replicates and
decrease the number of treatments. The exact number of treatments and replicates required to meet a particular minimum power demand can be determined using power curves together with an estimate of the expected variability in the system (see Case Study Panel 3).

A cautionary note

Readers should be aware that there are situations for which the general linear model is inappropriate, prohibiting the use of either ANOVA or linear regression. For example, highly non-normal errors require generalized linear models, which allow for a diversity of error distributions (e.g., log-normal, Poisson, or negative binomial; McCullagh and Nelder 1997; Wilson and Grenfell 1997). It is currently impossible to state whether our conclusions regarding the relative power of regression and ANOVA also extend to generalized linear models, since calculations of power for such models are still in their infancy. However, we hypothesize that our conclusions will hold for this more general class of models, since regression models will include fewer parameters than ANOVA models for all but the simplest experiments. Testing this hypothesis is an important area for further research.

Conclusions

This review was motivated by a perceived shortage of information about the relative merits of regression- and ANOVA-based experiments when there is at least one continuous variable and the research question can be answered with either regression or ANOVA. Many current ecological questions fall into this category, including investigations of the relationships between species richness and ecosystem functioning (e.g., Loreau et al. 2001) and between metabolic rate and population/community parameters (e.g., Brown et al. 2004). To aid researchers working on these and other questions, we have shown that:

1. Regression and ANOVA are more similar to one another than they are different. The key distinction is that regression builds a quantitative model to describe the shape of the relationship between X and Y, using as few parameters as possible.
2. In testing the assumptions of regression and ANOVA, homogeneity of variance tends to be far more critical than normality for most ecological variables (Statistical Panel 1).
3. Regression is generally more powerful than ANOVA, and also provides additional information that can be incorporated into ecological models quite effectively.
4. Because unreplicated regression designs can be risky,
we recommend replicated regression designs that allow researchers to use either regression or ANOVA to analyze the resulting data.

(5) In replicated regression, how experimental units are allocated to treatments versus replicates has a major effect on the overall power of the “fall back” ANOVA. Decisions about the numbers of treatments should be based on the tradeoff between building a quantitative model and allowing for the possibility of falling back to ANOVA if necessary. To help ecologists choose among the alternatives, we have provided an example (Case Study Panel 3) and instructions for drawing Figure 3 for other design scenarios (Web-only Appendix 3).

Acknowledgments

Many people have provided constructive feedback on previous drafts of this manuscript, including R Thum, M McPeek, J Buziok, A Dawson, M Donahue, N Friedenberg, J Kellner, M Ayres, and J Pantel. J Aber, C Canham, J Pastor, and others who attended Cary Conference IX stimulated our thoughts about the role of regression-based designs in contributing to the development of ecological models. Our research is supported by NSF-DEB 0108474, NSF-DDIG 0206531, USGS/NIWR 2002NH1B, and the Cramer Fund at Dartmouth College.

References

