Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis

J. A. Thomas,1* M. G. Telfer,2† D. B. Roy,2 C. D. Preston,2 J. J. D. Greenwood,3 J. Asher,4 R. Fox,4 R. T. Clarke,1 J. H. Lawton5

There is growing concern about increased population, regional, and global extinctions of species. A key question is whether extinction rates for one group of organisms are representative of other taxa. We present a comparison at the national scale of population and regional extinctions of birds, butterflies, and vascular plants from Britain in recent decades. Butterflies experienced the greatest net losses, disappearing on average from 13% of their previously occupied 10-kilometer squares. If insects elsewhere in the world are similarly sensitive, the known global extinction rates of vertebrate and plant species have an unrecorded parallel among the invertebrates, strengthening the hypothesis that the natural world is experiencing the sixth major extinction event in its history.

Large-scale attempts to quantify recent losses of biodiversity are hindered by inconsistencies in the quality of data available for different taxa (1–3). For example, reported rates of global and national extinction in insect species are typically two orders of magnitude lower than those recorded for birds, large mammals, and certain fish, plant, and snail groups (1, 2). This difference might be merely an artifact of undersampling of the known insect species, exacerbated by the probability that a disproportionate number of the most acutely threatened insects belong to the majority (estimated at 90% globally) of species that have yet to be described (2, 4–6). Models that account for sampling effort do indeed generate more even extinction rates across taxa (6), although others conclude that the available data are inadequate for any comparisons to be made (7). Whatever the validity of these predictions, the assumption that mammals and birds serve as indicator groups for wider species losses remains untested (1, 2, 6, 8, 9). Furthermore, the problem of underrecording of invertebrates is amplified by recent recommendations that biologists focus on population extinctions, albeit at less-than-global scales, as more sensitive measures of decline than species extinctions (8–10).

34. G. W. Phoenix et al., Global Change Biol. 9, 1309 (2003).
35. Funding was provided by The Open University, Fer- guson Trust, and the Natural Environment Research Council. We thank the Centre for Ecology and Hydrology (CEH) Edinburgh for atmospheric data, and Countryside Council for Wales, Scottish Natural Heritage, English Nature, and landowners for their assistance. We also thank J. Aber, K. Bull, C. Clark, W. Currie, A. Davison, M. Dodd, J. Eriksen, D. Fowler, C. Likens, K. Nadelhoffer, J. Silverton, W. Schlesinger, D. Tilman, and members of the U.K. GANE (Global Atmospheric Nitrogen Enrichment) community for comments.

Supporting Online Material
www.sciencemag.org/cgi/content/full/303/5665/1876/DC1
Materials and Methods
Fig. S1
Table S1
References
that a majority of butterfly species (71% over ~20 years) has declined. Across the spectrum of changing distributions (Fig. 1B), butterflies have also fared worse than birds or plants: Two (3.4%) butterfly species became extinct in Britain between censuses compared to six (0.4%) native vascular plants over 70 years and no breeding bird species, and the most rapidly declining 10% of butterfly species experienced a ≈49% net loss in their occupancy of 10-km squares compared to birds (≈29%) and plants (≈22%). Similarly, the most rapidly increasing 10% of butterfly species showed net increases of only 21 to 164% in 10-km square occupancy compared to native birds (141 to 2900%) and plants (59 to 2583%). Population extinctions were recorded in all the main ecosystems of Britain, and were distributed with remarkable evenness across the nation, rather than concentrated in a few degraded regions (fig. S1).

The greater loss among British butterfly species may foreshadow similar declines in birds and plants, because insect populations typically respond more rapidly to adverse environmental change than longer-lived organisms or those with dormant propagules (22). On the other hand, we found even greater disparities over longer periods in smaller areas—single sites, the English county of Suffolk (3838 km²), and the Netherlands (33,238 km²)—where the proportions of resident butterfly species that became locally extinct over 100 to 150 years exceeded those of plants and vertebrates by one to two orders of magnitude (3). Comparatively crude assessments of other British insects (aculeate Hymenoptera, other Lepidoptera, some Diptera) suggest rates of decline similar to that of butterflies (3, 23), supporting the use of butterflies as realistic, as well as practical, indicators of change (2, 6, 24, 25). Beyond Europe, invertebrate declines may be seriously underestimated compared to declines among plants and vertebrates, owing to artefacts from low sampling levels (6), and at present even the more comprehensive attempts provide a mixed picture. Thus, large higher-trophic animals are reported as being more sensitive to human perturbation than are invertebrates in <10,000-ha study areas of Amazonian rainforest, yet in Brazil’s heavily degraded Atlantic rainforests, the reported extinction of butterfly species (four) marginally outnumbers that of vertebrates (two parrots) (24). In the United States, Species Reports Cards suggest that certain invertebrate groups (butterflies, Tiger beetles, dragonflies) have experienced fewer national extinctions than vertebrates in recent years, although a higher proportion of the former’s known species are listed as “at risk”; on the other hand, freshwater invertebrates (mussels, crayfish) have much the highest recorded extinction rates among all listed taxa (25). The extinction of marine invertebrate species may also have been grossly underrecorded worldwide (26).

Despite the low diversity of Britain’s biota, we suspect that the relative changes reported here are not atypical. Certainly, the main drivers of change in British plant, bird, and butterfly populations (13, 14, 20) are the same processes responsible for species’ declines worldwide (27, 28). Their impacts in Britain were perhaps muted during our inter-census period because (i) the major clearances of primary vegetation occurred in an earlier age, leaving degradation and fragmentation as the main adverse habitat changes (and the main driver of population extinctions in Britain); (ii) climate warming, to date, has enhanced the net capacity of British ecosystems to support butterfly and perhaps plant and bird species (20, 29); (iii) few exotics have colonized British ecosystems with the damaging impacts found in many less robust communities elsewhere [we found that 0, 6, and 48%, respectively, of established butterfly, bird, and plant species are aliens, despite a history in Britain of frequent introductions during the past 100, 200 (15), and 2000 (13) years, with very few alien plants dominant in ecosystems]; and (iv) targeted conservation measures, including regulation of collecting
and hunting, have reversed the former declines of several species. Nevertheless, exactly one-third of all the species we surveyed had declined, which is more than 50% greater than the proportion of mammal species estimated to have declined in a century across six subsets of continents (8). That this scale of population extinctions has yet to translate into species’ extinctions (8) is explained by the fact that Britain contains few declining species that are not widespread across Europe or indeed the Palaeartic or Holarctic. In contrast, the Hawaiian islands, with a land area just 7% that of Britain, contain a comparable number of insect, plant, and land bird species to that of Britain (about 10,000, 1100, and 135, respectively), but 89 to 100% of them are endemics. Cookie-cutter models, in which endemic-species packing is a key parameter, explain well the observed geographical variation in bird species’ extinctions in response to environmental change across this whole spectrum from biodiversity hot-spots to cold-spots (1). However, birds are imperfect model organisms because they represent just 0.6% of the world’s described species; no equivalent global data exist for insect extinctions (54% of described species).

Our data sets may also be unrepresentative of the wider world. Nevertheless, the important result here (Fig. 1) is that the only insect taxon to have been rigorously compared with plants or birds at this temporal or spatial scale experienced at least as many regional extinctions when exposed to the same range of environmental changes that afflict plants and vertebrates worldwide (27, 28). If insects elsewhere are similarly sensitive, we tentatively agree with the suggestion (6) that the known global extinction rates of vertebrate and plant species may have an unrecorded parallel among the insects, strengthening the hypothesis (1, 2, 4), derived from plant, vertebrate, and certain mollusk declines, that the biological world is approaching the sixth major extinction event in its history.

References and Notes
11. Material and methods: Further details of surveys are given on Science Online, together with tests for possible artifacts or bias in data set comparisons due to differences in sampling effort between surveys and different initial distributions of species in the three groups. Results justify our conclusion that any errors in intertaxon comparisons are one to two orders of magnitude smaller than the pattern of relative changes shown in Fig. 1. The data sets of distributions are held by the following. Plants: NERC’s Biological Records Centre (BRC), Monks Wood. Butterflies: BRC and Butterfly Conservation Society. Birds: British Trust for Ornithology.

Supporting Online Material
www.sciencemag.org/cgi/content/full/303/5665/1879/ DC1
Materials and Methods
SOM Text
Fig. S1
References
23 December 2003; accepted 17 February 2004