Polyubiquitin Insertions and the Phylogeny of Cercozoa and Rhizaria

David Bass, David Moreira, Purificación López-García, Stephane Polet, Ema E. Chao, Sophie von der Heyden, Jan Pawlowski, and Thomas Cavalier-Smith

Original paper

A single or double amino acid insertion at the monomer—monomer junction of the universal eukaryotic protein polyubiquitin is unique to Cercozoa and Foraminifera, closely related ‘core’ phyla in the protozoan infrakingdom Rhizaria. We screened 11 other candidate rhizarians for this insertion: Radiozoa (polycystine and acantharean radiolaria), a ‘microheliozoan’, and Apusozoa; all lack it, supporting suggestions that Foraminifera are more closely related to Cercozoa than either is to other eukaryotes. The insertion's size was ascertained for 12 additional Cercozoa to help resolve their basal branching order. The earliest branching Cercozoa generally have a single amino acid insertion, like all Foraminifera, but a large derived clade consisting of all Monadofilosa except Metopion, Helkesimastix, and Cercobodo agilis has two amino acids, suggesting one doubling event and no reversions to a single amino acid. Metromonas and Sainouron, cercozoans of uncertain position, have a double insertion, suggesting that they belong in Monadofilosa. An alternative interpretation, suggested by the higher positions for Metopion and Cercobodo on Bayesian trees compared with most distance trees, cannot be ruled out, i.e. that the second insertion took place earlier, in the ancestral filosan, and was followed by three independent reversions to a single amino acid in Chlorarachnea, Metopion and Cercobodo.

Key words: Cercozoa; Rhizaria; polyubiquitin insertion; Radiozoa; Foraminifera.

Introduction

Recent advances in eukaryote phylogenetic reconstruction stem from progress in four areas: novel organisms being cultured, thereby providing raw materials for genetic and morphological analysis; increased choice and sophistication of analytical techniques; basing phylogenetic analyses on several or many genes (e.g. Baldauf et al. 2000; Baptiste et al. 2002; Martin et al. 1998); and refining sequence-based trees with data from molecular cladistic characters, which can be highly resolving (Archibald et al. 2003; Stechmann and Cavalier Smith 2002, 2003), although such
data should be treated cautiously as indel characters may be homoplastic, for example by convergence or reversion (Bapteste and Philippe 2002). Increasingly many previously unclassified taxa are being placed into known groups, and misleading classifications and taxon designations arising from single-gene trees are being corrected (e.g. Cavalier-Smith, 2003a, 2004; Philippe and Adoutte 1998; Philippe et al. 2000). Consequently, the eukaryote tree is resolving into a topology with a rather small number of internally diverse taxonomic ‘supergroups’ (Berney et al. 2004; Cavalier-Smith 2003a, 2004). One of these, the biciliate infrakingdom Rhizaria (Cavalier-Smith 2002), has recently been the subject of several studies (Burki et al. 2002; Cavalier-Smith 2004; Cavalier-Smith and Chao 2003a—c; Nikolaev et al. 2003, 2004), which have sought to determine its member phyla, their interrelationships, and its closest relatives.

The two ‘core rhizarian’ phyla are the recently established Cercozoa (Bass and Cavalier-Smith 2004; Cavalier-Smith 1998; Cavalier-Smith and Chao 2003c) and the long-known Foraminifera (reviewed in Pawlowski et al. 2002). A common origin of Cercozoa and Foraminifera was initially suggested by actin trees (Keeling 2001) and by the marked propensity of both groups to form reticulopodia (Cavalier-Smith 2002). Support for this relationship was strengthened by the discovery that both phyla carry an insertion of one or two amino acid residues at the monomer—monomer junctions of the polyubiquitin gene (Archibald et al. 2003; Archibald and Keeling 2004), and by RNA polymerase II phylogenies (Longet et al. 2003).

Ubiquitin is a 76 aminoacid protein found in all eukaryotes, rivalling histone 4 in its degree of conservatism (Sharp and Li 1987). Ubiquitin genes occur in three main forms: single open reading frames, fused to ribosomal protein genes, or as head-to-tail multimers of ubiquitin coding regions (polyubiquitin). The protein is essential to many basic processes in eukaryotic cells, for example apoptosis, signal transduction, DNA repair; stress response, transcriptional regulation, endocytosis, and cell cycle regulation (Finley and Chau 1991; Hershko and Ciechanover 1998; Sun and Chen 2004).

Members of Haeckel’s Radiolaria also belong in Rhizaria, even though Radiolaria itself is now shown to be polyphyletic (Polet et al. 2004). Phaeodarea (e.g. Coelodendrum, Autosphaera, Aulacantha) are actually monadofilosan cercozoans (Polet et al. 2004), probably most closely related to the order Tectofilosida (Bass and Cavalier-Smith 2004), while Acantharea and Polycystinea often group together (López-García et al. 2002). The latter grouping constitutes phylum Radiozoa (Cavalier-Smith 1993, despite the removal of Phaeodarea: Cavalier-Smith 2004). Recent molecular studies (Nikolaev et al. 2004) also support the grouping of Sticholonchea with Acantharea as the subphylum Spasmaria within the Radiozoa (Cavalier-Smith 1993), confirming that the previous placement of Sticholonche in Heliozoa (Febvre-Chevalier 1990) was erroneous. Radiozoa are considered to be rhizarians on the basis of a shared propensity to make reticulopodia and their usual grouping with Foraminifera and Cercozoa on rRNA trees (Cavalier-Smith and Chao 2003b; López-García et al. 2002; Nikolaev et al. 2004; Polet et al. 2004).

However, the branching order of Cercozoa, Foraminifera, and Radiozoa is not well resolved. On 18S rRNA trees that include all three groups, Foraminifera often branch within or as sister to Radiozoa (Cavalier-Smith and Chao 2003b,c), or sometimes as sister to the cercozoan haplosporidia (Nikolaev et al. 2004). When Radiozoa are not included, Foraminifera branch as sister to the cercozoan Gromia oviformis (Berney and Pawlowski 2003; Longet et al. 2004; Nikolaev et al. 2003). In the protein (actin, RPBI) trees, in the absence of Radiozoa, Foraminifera may branch within core Cercozoa (Filosa) (Keeling 2001), or as sister to plasmodiophorids (Archibald and Keeling 2004) or to Gromia (Longet et al. 2003; 2004). However, when radiolarian actin was included, one of the foraminiferan actin paralogues branched with Radiozoa (Nikolaev et al. 2004). Here we sequence polyubiquitin genes from several acantharea and polycystines and an additional foraminiferan in order to decide whether Foraminifera are closer to Radiozoa or Cercozoa.

Two other groups originally but more doubtfully included in Rhizaria are centrohelid heliozoa and Apusozoa (Cavalier-Smith 2002). Recent 18S rDNA phylogenetic analyses, in combination with ultrastructural data, have led to these being omitted from the current circumscription of Rhizaria (Cavalier-Smith 2003a, 2004; Cavalier-Smith and Chao 2003a,b). However, in view of their historical association with Rhizaria, it was important to check whether polyubiquitin structure is conserved in a number of other groups in order to see if they have polyubiquitin insertions or not.
As some Cercozoa have one and others two amino acids in the polyubiquitin insertion, this character could in principle be used to partition Cercozoa cleanly into two groups if the number of amino acids was doubled only once and has never undergone reversion. This would be particularly valuable phylogenetically and taxonomically as the basal branches of existing cercozoan rDNA trees are already known to be poorly resolved, especially within the subphylum Filosa (Cavalier-Smith and Chao 2003c). Present evidence suggested that the cercozoan subphylum Endomyxa has an insertion of a single amino acid like Foraminifera (which may branch within it on sparsely sampled trees) and that all studied Filosa except for chlorarachnean algae have an insertion of two amino acids (Archibald et al. 2003; Archibald and Keeling 2004). Therefore, we also sequenced polyubiquitins from a much larger variety of filosan Cercozoa, to see which lineages have insertions of one or two amino acids and whether the evolutionary transition between the two types is indeed sufficiently rare to be a valuable phylogenetic marker within Filosa.

Results

Figure 1 shows the polyubiquitin sequences of 59 taxa, including numerous cercozoans. It can be seen that all Cercozoa have an insertion of either one or two amino acids compared with most eukaryotes. By contrast all Foraminifera have a single amino acid insertion, except for one species, where two different genes were found, two copies of one with a single insertion, which we consider the authentic foraminifera sequence, and a single copy with no insertion that is likely to be a contaminant. None of the new sequences from Radiozoa, Apusozoa, and Heliozoa contained inserts.

To enable us to interpret the insertion pattern within Cercozoa, especially of Cercobodo agilis for which no previous sequences were available, we constructed more comprehensive 18S rDNA trees for Cercozoa (Figs 2,3).

Discussion

We have now shown that the unnamed marine microheliozoan, two Apusozoa, and five Radiozoa (two acanthareans and three polycystineans) all lack amino acid insertions between the ubiquitin monomers of the polyubiquitin gene. On the simplest interpretation, which assumes that this insertion once gained has never been lost, the absence of the insertion in these two groups suggests that Foraminifera and Cercozoa are more closely related to each other than they are to any taxa lacking an insertion (Fig. 4). Because we cannot rule out the possibility that the insertion might sometimes be lost, other evidence is needed to confirm this probable closer relationship of Foraminifera and Cercozoa.

The Evolutionary Position of Radiozoa

If it is true that the insertion has never been lost in any group, then the frequent grouping of Foraminifera with Polycystinea on 18S rDNA trees (Cavalier-Smith and Chao 2003b,c) is most likely a long-branch attraction artifact (Embley and Hirt 1998; Philippe and Adoutte 1998; Philippe et al. 2000). Initially, that grouping of Radiozoa and Foraminifera seemed to support the classification of both groups as the supergroup Retaria (Cavalier-Smith 1999). The discovery that Phaeodarea are cercozoans (Polet et al. 2004) has shown that the taxon Retaria as originally conceived (Cavalier-Smith 1999) was polyphyletic. Therefore, Foraminifera and Radiozoa (modified by excluding Phaeodarea: Cavalier-Smith 2003a) are again treated as distinct phyla and Retaria not used as a formal taxon (Cavalier-Smith 1993, 2004). Unless the polyubiquitin insertion was lost in Radiozoa, our results indicate that even omitting Phaeodarea, Retaria would not be holophyletic.

Exclusion of Apusozoa from Rhizaria

When Apusozoa were originally tentatively placed in Rhizaria it was recognised that their inclusion made the group paraphyletic (Cavalier-Smith
Figure 1. Junction between two ubiquitin monomers in the polyubiquitin genes of rhizarians, apusozoans, a marine microheliozoan (possibly sister to the centrohelid heliozoa: Cavalier-Smith and Chao 2003a), and a range of other eukaryotes. The insertions of one and two amino acids between the monomers are marked in bold. The 23 results generated by this study are marked with an asterisk.
Figure 2. Distance tree of 91 cercozoan 18S rRNA sequences (including some from environmental libraries and novel clades first described in Bass and Cavalier-Smith 2004) using 1163 positions (GTR+Γ+ᵢ model). All bootstrap percentages ≥75% are shown; others lower than this are shown for groups of particular interest to this study. Black blobs indicate 100% support. Black squares to the right of the tree represent the number of amino acid residues in the polyubiquitin insertion in the representative member(s) of the taxa indicated.
2002). Subsequently a possible relationship of Apusozoa to Excavata was suggested, enabling Apusozoa to be excluded from Rhizaria (Cavalier-Smith 2003a, b). Neither Amastigomonas nor Ancyromonas polyubiquitin genes carry the insertion, from which we infer that Apusozoa do not
branch within core rhizaria. Apusozoa was a candidate for inclusion in Rhizaria on the basis of its mode of locomotion (active anterior and trailing posterior flagellum used for gliding on surfaces characterise Cercozoa) and sharing the character of kinetocyst extrusomes with some Cercozoa. The phylogenetic position (or even holophyly) of Apusozoa cannot be resolved by 18S rDNA analyses (Atkins et al. 2000; Cavalier-Smith 2000; Cavalier-Smith and Chao 2003b; Cavalier-Smith 2004). It is now considered incertae sedis in subkingdom Biciliata; whether it is the most divergent bikont group or is related to excavates remains unclear (Cavalier-Smith 2004; Cavalier-Smith and Chao 2003b).

Heliozoa

 Centrohelid heliozoa, like Apusozoa, fail to group consistently with any other phylum on rDNA trees (Cavalier-Smith and Chao 2003b) and are now also provisionally excluded from Rhizaria (Cavalier-Smith 2004). As all our stocks of genomic DNA from cultures of centrohelid Heliozoa are probably contaminated with other (prey) eukaryotes, we did not consider it worthwhile to sequence polyubiquitin from them, as its provenance would have been uncertain. Heliozoa are therefore represented in our polyubiquitin data only by the unnamed marine microheliozoan (which feeds on bacteria) that usually groups weakly as sister to centrohelids in 18S rDNA trees (Cavalier-Smith and Chao 2003a). However, it is ultrastructurally uncharacterised and probably not a centrohelid. The absence of the insertion from this microheliozoan suggests that it is not part of the cercozoan-foraminiferan clade, but this should not be generalised to centrohelids until there is direct evidence from them or firmer evidence that the two are related, though it is likely that centrohelids will turn out also to lack the insert.

Figure 4. Schematic tree showing relative phylogenetic positions of the taxa under study as jointly informed by 18S rRNA gene phylogenies and the partitioning suggested by the distribution of presence/absence, and the size, of the polyubiquitin insertion. Solid branches summarize information from 18S rDNA analyses, morphological, and polyubiquitin data; dashed lines indicate those taxa (Sainouron and Helkesimastix) for which 18S rDNA sequences are unavailable. The dotted line to Metromonas signifies concordance of morphological and polyubiquitin insertion data, but discordance with 18S rDNA sequence data; that to Cercobodo indicates its position according to some analyses and as suggested by the nature of the insertion in its polyubiquitin gene, but acknowledges the instability of its branching position (cf. Figs 2, 3).
Centrohelids have also been considered putative Rhizaria: their hexagonally arranged axopodial axonemes superficially resemble those of radiolarians, and they also have kinetocyst extrusomes, but both characters may be convergent. They do not group within or as sister to Rhizaria on 18S rDNA and actin trees (Cavalier-Smith and Chao 2003a; Nikolaev et al. 2004). As desmothoracids (e.g. Clathrulina, Hedriocystis) are not related to centrohelids but group within Cercozoa, as suggested by Cavalier-Smith and Chao (2003a,c) and shown in Nikolaev et al. (2004), they should carry the insert. This is currently being investigated.

The Relationship between Foraminifera and Cercozoa

There is now evidence of single amino acid insertions in the polyubiquitin gene of three phylogenetically divergent foraminiferan genera—Haynesina, Reticulomyxa (both have an alanine insert) (Archibald et al. 2003), and Bathysiphon (threonine) (this study). This information, in combination with several other lines of evidence (actin, RPB1, and 18S rDNA phylogenies; see references above), confirms that Foraminifera and Cercozoa are very closely related, but whether they are sisters or whether Foraminifera occupy a derived position within Cercozoa remains uncertain.

The facts that Foraminifera do not share the unique single nucleotide deletion in the 18S rRNA gene shown by all Cercozoa (Cavalier-Smith and Chao 2003b), and that more highly sampled 18S rDNA distance and ML trees do not show Foraminifera nested within Cercozoa, suggest that Foraminifera and Cercozoa may be sisters. However, it is possible, given the rapid evolution of the foraminiferan rRNA genes (Pawlowski and Berney 2003) that the thymine-containing nucleotide in Foraminifera at the site of the cercozoan deletion might be secondarily inserted, and that Foraminifera are actually derived from Cercozoa. This would be congruent with some actin trees, which show Foraminifera branching within Cercozoa, as sister to Cercomonas (Keeling 2001) or as sister to Plasmodiophorida (Archibald and Keeling 2004). However, establishing the phylogenetic position of Foraminifera using actin sequence is made difficult by the presence in Foraminifera of two paralogous actin genes, which often do not group together. For example, in some recent actin phylogenies, one parologue branches with Gromia oviformis, while the other appears as sister to Polycystinea (Long et al. 2004; Nikolaev et al. 2004); another recent very well sampled actin tree did not even group Foraminifera and Cercozoa (Stechmann and Cavalier-Smith unpublished). This problem was resolved recently by increasing taxon sampling of foraminiferan actin and by removing fast-evolving actin sequences from the analyses (Flakowski et al. 2005). However, actin is too conserved to resolve the exact relationship between Cercozoa and Foraminifera and other proteins should be investigated.

Phylogeny of Cercozoa

As Figure 1 indicated, the following cercozoans have a single amino acid insertion: Bigelowiella and Lotharella (both chlorarachneans), Cercobodo agilis, Metopion, and Gromia. Helkesimastix also has a single amino acid insertion and is therefore a core rhizarian, but we cannot confirm that it is a cercozoan as data from other genes are inconclusive, even though its gliding zooflagellate morphology strongly suggests that it is; the presence of only one amino insertion, in contrast to the two in Cercomonas, provides additional evidence that it is not a cercomonad. The taxa with a single amino acid insertion either belong to the subphylum Endomyxa (Gromia), or are basal lineages in subphylum Filosa in many 18S rDNA trees (e.g. Fig. 2). The possible exceptions to this are Metopion and Cercobodo, which in some analyses group above proteomyxids and as sister to heteromitids respectively, but with negligible support (Fig. 3). At other times they branch below proteomyxids, but equally unreliably.

In many cases the evidence from 18S rDNA trees and the polyubiquitin insertion data are concordant. The few cases where there are weakly supported discrepancies between trees and the distribution of the polyubiquitin insertion are priorities for further analysis. If there are no proven cases of loss of either amino acid residues in the insertion, our data would provide strong evidence that taxa with a single amino acid insertion are indeed the most basal filosans, and those with insertions of two amino acids are derived. However, as Figure 3 suggests that this condition may have been violated at least three times, albeit with weak support (Cercobodo agilis, Metopion, and Metromonas), evidence from additional sources is required to resolve the branching order within Cercozoa, and thus verify that some reversions from a double to a single amino acid insertion have occurred.
On the basis of limited morphological evidence (light microscope and ultrastructural) Metopion, Helkesimastix, and Cercobodo agilis might be thought to belong to Sarcomonadida. However, weak indications from 18S rDNA trees are now strengthened by our new polyubiquitin data, which suggest that they represent at least two different, divergent filosan lineages (Figs 2, 3). As Cercobodo agilis was originally described as Cercomonas agilis Morott, but had a single amino acid insert unlike all other Cercomonas strains, we sequenced the 18S rRNA gene to see whether or not it has been misclassified. As Figure 3 shows, Cercobodo agilis does not group with Cercomonas Clade A or B, but instead with Novel Clade 7 (Bass and Cavalier-Smith 2004), in some analyses one of the most deeply diverging filosan clades. The suggestion, on the basis of morphological observations, that Sainouron is a sarcomonad, and not a deep-branching filosan (Karpov 1990) is supported by the fact it has a two-amino acid insertion. Both Sainouron and Helkesimastix are very difficult to work with in terms of rDNA sequencing. As we have not been able to obtain complete 18S rDNA sequences from either our new data provide the first molecular evidence that these genera are cercozoan and core rhizarian respectively.

Almost all other cercozoans screened are more derived filosans (including Monadofilosa), according to 18S rDNA phylogenies, and have an insertion comprising two amino acids. The only exception to this is Metromonas, which has the same insertion of two amino acids as several monadofilosans but is the only taxon with such an insertion to group basally—as sister to, or near to Chlorarachnea in ML, distance, and Bayesian analyses. However, this relationship has very little statistical support (see also Bass and Cavalier-Smith 2004) and is not corroborated by morphological evidence. We suggest that Metromonas may really be related to monadofilosans, but more data are required to confirm this, and we do not rule out the possibility that Metromonas is a basal filosan and that either the insertion of two amino acids is a character convergent with that in the true monadofilosans or there have been secondary reversions to a single amino acid. Indeed, if the higher positions shown for Metopion and Cercobodo on the Bayesian tree (Fig. 3) turn out to be correct, rather than their deeper branching seen on distance trees such as Figure 2, a reasonably parsimonious alternative interpretation would be that the second insertion took place somewhat earlier than indicated in Figure 4, in the ancestral filosan, and was later followed by three independent reversions to a single amino acid in Chlorarachnea, Metopion and Cercobodo.

Identification of Novel Cercozoan Clades

Of the nine novel clades revealed by screening environmental 18S rRNA gene libraries in Bass and Cavalier-Smith (2004) (our knowledge of them was previously limited to these sequence data), two have now been partially characterised by the knowledge that they contain Pseudopirsonia mucosa (Kühn et al. 2004) (a modified Novel Clade 1; 80% bootstrap support) and Cercobodo agilis (Novel Clade 7; 88% bootstrap support) (Fig. 3). Figures 2 and 3 are the first published trees showing convincingly that Pseudopirsonia mucosa is a monadofilosan cercozoan, not a heterokont as stated in GenBank (Bass and Cavalier-Smith 2004); although Künn et al. (2004) also show Pseudopirsonia to be a cercozoan, parts of their tree in Figure 3 are discordant with previous studies of both heterokonts and Cercozoa; for example alveolates appear polyphyletic; within heterokonts Placidiales, Pseudofungi and hypogyrists are not monophyletic; and within Cercozoa Filosa are not holophyletic and the genus Cercomonas is polyphyletic, being split into three clades, one of which misleadingly appears to be sister to Pseudopirsonia. Furthermore, the Bayesian tree (Fig. 3) strongly suggests for the first time that Novel Clade 6 is closely related to Metopion and that Novel Clade 3 belongs in Thecofilosea.

DNA from Uncultivated Samples

It might be argued that as neither the polycystines nor the acantharea were cultivated, the DNA samples from them could have been contaminated by non-rhizarian protists and that it may be their DNA that was amplified by the polyubiquitin primers, and that Radiozoa themselves might actually have the insert. To ensure that this is not the case, our sequences are based on several independent samples processed in separate laboratories. Each sample was carefully washed in an attempt to exclude such contamination and all of them yielded only authentic radiozoan rRNA genes when tested using universal 18S rDNA primers. Although the possibility of contamination of all of them seems remote, because we cannot altogether exclude it (and also because there is a possibility that the ancestral radiozoa might have
lost the insertion), our conclusion that Foraminifera are more probably more closely related to Cercozoa than to the Radiozoa requires corroboration from other molecules.

In the foraminiferan Bathysiphon, even though two clones carried a single amino acid insertion as in all other studied foraminifera, one clone showed no insertion. This latter sequence is very unlikely to originate from a foraminiferan as it lacks three signature sequences from elsewhere in the polyubiquitin gene that are shared by all other sequenced foraminiferans, shown here in bold italics with the non-foraminiferan state as subscripts: GGA-MQIFVKLTGKTITLDVEP\textsubscript{N\textsubscript{5}}DTIQ\textsubscript{E}/D/S NVKAKI\textsubscript{Q}DKEGI\textsubscript{P}E\textsubscript{D}.

Conclusions

The possible partitions in the rhizarian tree in the light of the taxonomic distribution of the two types of polyubiquitin insertion in combination with information from 18S rDNA trees were summarised in Figure 4. Because they are the only two groups to share the insert, Cercozoa and Foraminifera appear to be more closely related to each other than any of the other groups screened, but the distribution of the polyubiquitin insertion does not allow us to decide whether Cercozoa are sisters of or ancestral to Foraminifera. If there turn out to be no cases where the insertion has been deleted, then its absence from Apusozoa, Radiozoa and the microheliozoan is strong evidence that these groups are excluded from core Rhizaria, although Radiozoa probably belong to Rhizaria, branching just outside the Cercozoa—Foraminifera clade.

For cercozoan phylogeny, Figure 3 is largely congruent with that in Bass and Cavalier-Smith (2004). The major novelties are that Cercobodo agilis is strongly supported as a member of Novel Clade 7 (Bass and Cavalier-Smith 2004) and desmothoracids branch well within the proteomyxids. Assuming that insertions have not arisen convergently, we propose that Sainouron is a monadofilosan and Helkesimastix is a more divergent cercozoan (though it might group outside Cercozoa, it is nonetheless definitely a core rhizarian). Because of the conflict between the distance and Bayesian trees in the positions of Metopion and Cercobodo, we cannot determine whether they are basal filosans that never had the second amino acid insertion (Fig. 4) or are part of the later sarcomonad radiation and have secondarily lost it. Thus the second amino acid insertion occurred either in the ancestral filosan or somewhat later (Fig. 4), after the divergence of Helkesimastix, Novel Clade 7, Chlorarachnea, and the rest of Filosa. It also remains unclear whether Metromonas is sister to Chlorarachnea, as weakly indicated by the rDNA trees, or closer to Monadilosa as morphology and the doubleness of its polyubiquitin insertion suggest.

Post Scriptum

Since this paper was written, Vickerman and Moreira (pers. comm.) have shown that a newly discovered cercozoan, ‘Aurigamonas solis’, is related to Cercobodo agilis, belonging to Novel Clade 7 according to 18S rDNA phylogenies, and like C. agilis, has a single amino acid polyubiquitin insertion. Therefore it is possible that there was a reversion to a single amino acid insertion in the common ancestor of all NC7 lineages.

Methods

Detection of polyubiquitin insertion: Genomic DNA from the following taxa was amplified with primers UBIQ1: 5’-GGCCATGCAHATTYTGTAARAC-3’ and IUB2: 5’-GATGCCYTCYTTRYTCTYTG-3’ and IUB2: 5’-GATGCCYTCYTTRYTCTYTG-3’. ‘Spongomonas minima UT1’ (ATCC 50405), Cercomonas ‘longicauda’ (ATCC50344), Heteromita sp. (culture now dead), Sainouron mikroteron (ATCC 50340), Metromonas simplex (culture now dead), Massisteria marina (ATCC 50266), Dimorpha-like sp. (ATCC 50522), Gymnophrys sp. (ATCC 50638), Metopion fluens (AP Mylnikov, Borok, Russia), Helkesimastix fecicola (ATCC 50328), Cercobodo agilis (CCAP 1910/1), Gromia oviformis, Bathysiphon sp.*, Collozoa sp.**, Collozoa inermé**, Sphaerozoum italicum**, Stauracon pallidus**, Xiphacantha alata**, Ancyromonas sigmoides (ATCC 50267), Amastigomonas sp. (ATCC 50062), and marine microheliozoan (TC-S lab). The species marked with single asterisks are uncultivable. Those with two asterisks were collected directly from plankton samples taken from Villefranche sur Mer (Mediterranean coast of France) at 25 m depth using a plankton net. The different species were identified using a stereomicroscope, isolated and washed many times with sterile sea water before DNA extraction. Bathysiphon sp. was collected from the coast of Scotland. G. oviformis originated from the Mediterranean coast. As for the planktonic species, the foraminifera were thoroughly cleaned prior to extraction, which was performed...
with 10—50 specimens. Gromia’s extraction was
done using single specimens undergoing game-
togenesis, as described in Arnold (1972). To
ascertain the authenticity of ubiquitin sequences,
amplifications were obtained from at least two
DNA extracts for each uncultured species and
1—3 clones were sequenced for each PCR
product.

PCR reactions were performed as follows: 3 min
denaturation at 94 °C, followed by 35 or 45 cycles
of 45 s at 92 °C, 1 min at 50 °C, and 1.5 min at
72 °C, followed by a final extension of 5 min at
72 °C. The products were run on a gel. This primer
pair produces a ladder, the shortest fragment is
less than a complete ubiquitin monomer; the
bands increase in size by one whole monomer
length. Bands corresponding to 1.5 and 2.5
monomer lengths were excised from the gel and
purified. rDNA clone libraries were constructed
using the TOPO TA Cloning kit (Invitrogen). White
or light blue colonies were picked and grown in
2 ml LB medium: 1 µl ampicillin overnight. The
plasmid DNA was extracted and cleaned using
the QIAquick PCR Purification kit (Qiagen). The
cleaned products were run on a gel with known
negative transformsants; positive transformsants
were sequenced using dye terminators and
separated on an automated ABI-377 sequencer.
The sequencing primers used were M13 forward
and M13 reverse. The sequences were edited and
translated in the trace editor TED, then aligned by
eye using the Genetic Data Environment software.

18S rDNA distance and Bayesian trees: a
representative sample of 89 partial (about 1.26 kb
only to allow inclusion of the incomplete novel
clad sequences) cercozoan sequences from our
database was aligned by eye using the Genetic
Data Environment software. New 18S rDNA
sequences for Cercobothro agilis (this study;
culture from K. Vickerman, Glasgow) and Pseu-
dopirsonia mucosa (GenBank) were aligned to this
dataset. Gaps and ambiguously aligned positions
were also removed, leaving an alignment of 1163
positions. ModelTest v.3.06 (Posada and Crandall
1998) selected the GTR model with gamma
correction for intersite rate variation (Γ) and
allowance for invariant sites (i) for the dataset
(α = 0.631; i = 0.258). These parameters were
used for distance trees constructed using PAUP
4.0b10 (Swofford, 2003). A heuristic search (500
replicates; random addition) using minimum evo-
uision was made (with TBR branch swapping). The
tree was rooted between Filosa and Endomyxa as
shown by maximum likelihood trees with close
outgroups in Cavalier-Smith and Chao (2003c).

Bootstrap support values were estimated using
500 bootstrap replicates within one addition
sequence for a distance analysis using a ML
model of substitution with the same values of α
and i.

The Bayesian tree (Fig. 3) was calculated using
MrBayes v3.0b4 (Huelsenbeck and Ronquist
2001) based on 100 taxa, including all those in
Figure 2 with the addition of desmothoracids
(Clathrulina & Hedriocystis) and some more
environmental cercozoan sequences); 1118 posi-
tions were used for the analysis. Two separate
MCMCMC runs with randomly generated starting
trees were carried out for 4 million generations
each with one cold and three heated chains. The
evolutionary model applied included GTR sub-
stitution matrix, gamma correction with shape
parameter estimated from the data, the covarion
model, and autocorrelation. Trees were sampled
every 100 generations. Six thousand and five
hundred trees were discarded as burn-in (trees
sampled before the likelihood plots reached a
plateau). A consensus of the remaining trees was
generated to reveal the posterior probabilities
(PPs) of the branching pattern. Both independent
runs resulted in basically identical tree topologies
and posterior probabilities, indicating that the runs
lasted long enough to converge. The tree shown
is not the consensus tree produced by the Bayesian
analysis but the tree with the highest likelihood
selected from the posterior distribution, annotated
with the consensus PPs. The bootstrap support
values on Figure. 3 were estimated in PAUP
4.0b10 using 500 bootstrap replicates for each
of 50 addition sequence replicates for a distance
analysis using a GTR+Γ+I model (α = 0.611;
i = 0.237).

Sequences have been deposited in GenBank
under accession numbers AY748806—AY748813,
AJ937550—AJ937554, DQ098270—DQ098278, and
DQ100436—DQ100438. Sequence alignments are
available on request from the corresponding author.

Acknowledgements

The work was supported by NERC Research
Studentships to DB and Sydh. TCS thanks NERC
UK for research grants and NERC and the
Canadian Institute for Advanced Research Evolu-
tionary Biology Program for fellowship support.
DM, PL-G, SP, and JP would like to thank Jean
and Colette Febvre (Station Biologique de Ville-
franche sur Mer) for hospitality and help during the
isolation and identification of Polycystinea and Acantharea. Their part of the work was supported by an ATIP grant of the CNRS to PL-G. Research of JP and SP was supported by Swiss NSF grant 3100A0-100415. We thank John M Archibald for the polyubiquitin primers.

Reference

Phylogeny of Cercozoa and Rhizaria

161

Karpov SA (1990) System of Protists. Omsk, Mezhvuzoskaya

