Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.

Cyanobacteria constitute a phylogenetically diverse group of bacteria that can carry out oxygenic photosynthesis (1). These cosmopolitan microorganisms occupy a wide array of terrestrial, marine, and freshwater habitats. They are major modern primary producers, as exemplified by the two marine cyanobacterial genera Prochlorococcus and Synechococcus, which are responsible for 25% of global photosynthesis (2). In addition to their evolutionary importance as ancestors of chloroplasts in photosynthetic eukaryotes (1), cyanobacteria have an extensive fossil record. Calcified cyanobacteria commonly occur since the base of the Cambrian, the earliest undisputed occurrence being Gnevanella at 700 million years ago (3). Moreover, the occurrence of massive fossil stromatolites likely traces their emergence back to at least 2.7 billion years ago (4). Since then, they have played a major role in the carbon cycle by converting CO₂ into organic carbon and carbonates (2) and incidentally enriching the atmosphere in oxygen (5).

Carbonate precipitation by some cyanobacteria results from their photosynthetic activity (6, 7). Photosynthesis locally increases the concentration of CO₂ through the disproportionation of bicarbonate to carbonate and CO₂, which is fixed by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO). The export of alkalinity from the intracellular to the extracellular medium involves a mechanism that is still poorly documented. This export process raises the saturation index of the surrounding microenvironment for carbonate minerals, leading to mineral precipitation if free cations (e.g., Ca²⁺) and nucleation sites are available (6). In all cases described so far [e.g., (2, 8)], carbonate mineral precipitation by cyanobacteria is extracellular. As a result, the chemical composition of precipitates depends essentially on the surrounding environmental conditions, with little control by the cell (9). Calcification efficiency varies among different species as a function of extracellular surface properties, including exopolymer composition (10) or varying physiological states of the cell (11, 12). However, cyanobacterial calcification has been studied only in a few model species; thus, our knowledge of the mechanisms involved remains limited to a narrow phylogenetic window.

We studied biofilms dominated by cyanobacteria derived from modern microbialites collected in the highly alkaline (pH ~8.9) Lake Alchichica, Mexico (13). Previous studies have detected a large diversity of bacteria and microbial eukaryotes in these samples, plus a minor archaean component (14, 15). Alchichica microbialites are mostly composed of hydromagnesite [Mg₆(CO₃)₄(OH)₂·4(H₂O)] and aragonite (CaCO₃). In the course of long-term studies of Alchichica microbialites maintained in laboratory aquaria, we observed the conspicuous development of phototrophic biofilms on aquarium walls (fig. S1). The biofilms were dominated by cyanobacteria of different sizes and morphotypes (13), also recognizable by confocal laser scanning microscopy (CLSM) according to their red autofluorescence (using a green excitation wavelength). Among these different morphotypes, one relatively small, rod-shaped, unicellular morphotype was particularly abundant (fig. S1). These cells measured 3.9 ± 0.6 μm in length and 1.1 ± 0.1 μm in width and exhibited a granular cytoplasm (fig. 1, A and B, and table S1). Autofluorescence emission spectra measured on individual cells showed the presence of chlorophyll and phycocyanin, supporting their identification as cyanobacteria (fig. S2). Scanning electron microscopy (SEM) revealed spherical intracellular granules in this morphotype with average diameter of 270 ± 44 nm (Fig. 1, C to I, and table S1). The average number of inclusions per cell was 21 ± 5. These inclusions were very bright in backscattered electron and secondary electron modes, suggesting that they contained elements of high atomic number. Their chemical composition was determined by energy-dispersive x-ray spectroscopy (EDXS; Fig. 2A). Inclusions contained Ca, Mg, Ba, and Sr as major elements with atomic ratios Ca/Mg = 2.88, Ba/Mg = 1.11, and Sr/Mg = 0.42 (table S2). These ratios were markedly different from those measured in the solution; relative to the medium where cells grew, Ba/Ca and Sr/Ca atomic ratios in the inclusions were higher by factors of 1370 and 86, respectively (tables S2 and S3).

We investigated the chemical composition and structure of the Ca-Mg-Sr-Ba inclusions with the use of transmission electron microscopy (TEM) and scanning transmission x-ray microscopy (STXM) (13). STXM allows imaging and acquisition of x-ray absorption near-edge structure (XANES) spectra at high spectral (~0.1 eV) and spatial (~25 nm) resolution. A peak at 290.3 eV in the XANES spectra measured at the C K-edge on intracellular inclusions (fig. 2C and table S4) was attributed unambiguously to 1s-π* electronic transitions in carbonate groups (16). Selected-area electron diffraction patterns obtained by TEM on these inclusions suggested that they are amorphous (Fig. 2B). XANES spectra at the Ca L₂,₃ edges are indicative of the local structure around Ca and can be used to characterize poorly organized phases [e.g., (16, 17)]. Spectra measured on intracellular inclusions were different from spectra of common reference Ca carbonates such as aragonite, calcite, or Ca-substituted strontianite, but they were very similar to the spectrum of benstonite, a Mg-Ca-Sr-Ba carbonate (Fig. 2D and table S5). The stoichiometric formula of the intracellular inclusions can thus be written as (Sr,Ba)₂(Mg,Sr₂)₆(C₃O₆)₃(Ca,Mg(CO₃))₃, following that of benstonite and in agreement with EDXS analyses. Hence, these intracellular inclusions are composed of an unusual benstonite-like phase with no long-range order and an unusual stoichiometry. In total, inclusions occupied ~5% of the total cell volume, raising the total density of the cells by 12% (tables S6 and S7).

We enriched these cyanobacteria in culture by inoculating modified BG11 medium with cells smaller than 3 μm from disrupted biofilms. CLSM and SEM observations showed that six enrichment cultures (out of 96) contained this single cyanobacterial morphotype with intracellular inclusions—that is, with no additional cyanobacterial morphotype as detected by microscopy.
This was further confirmed by amplification and sequencing of 16S ribosomal RNA (rRNA) genes using cyanobacterial-specific primers, which provided 100% identical sequences within and among the six enrichments (table S8). Phylogenetic analysis showed that this strain was a member of the basal cyanobacterial order Gloeobacterales (Fig. 3).

The sequences obtained from the enrichment cultures were almost identical (99.7% sequence identity) to AQ1_1_1C_35 (CyanoOTU02) (13), an environmental sequence abundantly retrieved from aquarium microbialites (up to 20% of cyanobacterial sequences) (15). This indicates that this lineage is an important cyanobacterial component of actively growing microbialites, being able to disperse and form neighboring biofilms on aquarium walls. Because it is phylogenetically very distant from Gloeobacter, the only genus described within Gloeobacterales, we propose the following status: order Gloeobacterales, Candidatus Gloeomargarita lithophora gen. et sp. nov. (13).

The amorphous intracellular bioprecipitates are structurally and chemically different from the well-crystallized phases forming in the extracellular solution (i.e., aragonite and hydro-magnesite) (tables S2 and S3). Incorporation of Sr and Ba in carbonates has implications for Sr/Ca and Ba/Ca ratios in marine carbonates, which are frequently used as paleoenvironmental proxies (18). Such proxies rely on the assumption that these ratios are approximately the same (or slightly lower) in the solid phases as in the solution. In Candidatus G. lithophora intracellular inclusions, these ratios are much higher in the solid phase and are similar to what has been found in some algae (19). Such an enrichment in Sr and Ba might involve active import systems specific for Sr2+ and Ba2+ and/or export systems extruding specifically Ca2+ and maintaining low cytoplasmic Ca2+ levels (20).

The amorphous structure of the inclusions is somewhat similar to relatively unstable amorphous calcium carbonates (ACCs) observed in biological, mostly eukaryotic systems (21). Consistent with what has often been observed in these ACC-containing systems (21), the presence of organic macromolecules may...
stabilize the intracellular amorphous carbonates observed in *Candidatus* G. lithophora. Diverse local structures were recently suggested for these phases lacking long-range order (22). The Mg-, Ca-, Sr-, and Ba-containing inclusions expand the known diversity of ACC compositions.

Intracellular carbonate precipitation in this cyanobacterium likely influences its biology and ecology. First, by changing average cell density, these precipitates must alter cell buoyancy. The conspicuous occurrence of *Candidatus* G. lithophora in aquarium wall biofilms implies that a dispersive planktonic phase exists that allows the colonization of surrounding surfaces. Therefore, whereas gas vesicles function as flotation devices in planktonic cyanobacteria and other prokaryotes (23), intracellular carbonates might serve as ballast—an adaptation to a benthic mode of life. Second, the formation of intracellular carbonates implies that the alkalinity excess produced by cyanobacteria during photosynthetic carbon fixation, a process taking place in carboxysomes, is not always exported extracellularly but can be trapped within amorphous carbonate inclusions. Whether carboxysomes could also provide nucleation centers for carbonate precipitation remains an open question. Carbonate precipitation could act as a pH buffering system leading to an efficient carbon-concentrating mechanism and hence a high photosynthesis rate (3).

Because intracellular biomineralization occurs in a phylogenetically basal lineage of cyanobacteria that has retained ancestral characteristics (24) and because the alkalinity export may require the evolution of specific machinery, it might be argued that this calcification mode was performed by some ancestral cyanobacteria. *Gloeobacterales* is the only cyanobacterial order branching out before the chloroplast clade in molecular phylogenies of conserved gene markers (Fig. 3) (25). Not only *Gloeobacter violaceus*, isolated from limestone biofilms (24), but also most environmental sequences forming the large *Gloeobacterales* clade have been retrieved from rock-associated biofilms, stromatolites, or thermophilic microbial mats (Fig. 3). This association indicates a preference for these types of substrates and suggests that *Gloeobacterales* ancestors may have also exhibited the capacity to form biofilms in moderately hot and/or calcifying environments. Intracellularly biomineralizing cyanobacteria would not be prone to the formation of microfossils, in contrast to cyanobacteria inducing extracellular precipitation of carbonates within sheaths (3, 6). As a result, microbialites dominated by intracellularly biomineralizing cyanobacteria might be devoid of microfossils. Alternatively, if they can be discriminated from abiotically formed phases (26), traces of this
Fig. 3. Phylogenetic position of the intracellularly calcifying cyanobacterium Candidatus Gloeomargarita lithophora. A maximum likelihood phylogenetic tree of cyanobacterial small subunit ribosomal DNAs was constructed from 1191 unambiguously aligned positions. Numbers at nodes indicate bootstrap values. The scale bar indicates the number of substitutions per site for a unit branch length.

biomineralization activity may be sought in the form of Ba- and Sr-rich carbonates. These Ba- and Sr-phases therefore add to the list of potential mineral biosignatures in the fossil record.

References and Notes

13. See supplementary materials on Science Online.

In Situ Evolutionary Rate Measurements Show Ecological Success of Recently Emerged Bacterial Hybrids

Vincent J. Denef* and Jillian F. Banfield†

Few data are available on how quickly free-living microorganisms evolve. We analyzed biofilms collected from a well-defined acid mine drainage system over 9 years to investigate the processes and determine rates of bacterial evolution directly in the environment. Population metagenomic analyses of the dominant primary producer yielded the nucleotide substitution rate, which we used to show that proliferation of a series of recombinant bacterial strains occurred over the past few decades. The ecological success of hybrid bacterial types highlights the role of evolutionary processes in rapid adaptation within natural microbial communities.

Microbial communities, which drive Earth’s geochemical cycles (1), can rapidly respond to change, but the proportion of this response that can be attributed to evolutionary processes, rather than species composition or gene expression shifts, remains an unresolved